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Abstract

The droplet growth models of Gyarmathy and Young, valid for arbitrary Knudsen numbers, are compared with
experimental growth results obtained from expansion wave tube experiments. Growth experiments of n-pentanol in
helium were performed at approximately 1 bar, resulting in growth curves stretching from the transition regime
(Knx1) to the continuum regime (Kn < 1). Droplet growth experiments of water in helium and water in nitrogen
were performed at elevated pressures, when the mean free path is small; hence, these growth curves are situated near
the continuum regime. For Kn > 0.1, the Gyarmathy model appears to describe the experimental growth curves
better than the Young model. However, for Kn < 0.02, the Young model gives the best results. For the water—
helium and water—nitrogen systems new experimental diffusion coefficients are obtained, which are in good
agreement with literature data. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The growth of liquid droplets from a supersaturated
vapour is a classical subject of interest in many fields
of application. It is one of the key processes in aerosol
science and cloud physics. It is important for conden-
sate separation. On a more fundamental level, it is
directly related to the investigations of nucleation, the
formation of nuclei from which droplets grow. A
review of theoretical droplet growth models is provided
by Seinfeld and Pandis [1].

A very important parameter, when considering droplet
growth, is the Knudsen number Kn. It is defined
as the ratio of the mean free path of the molecules to
the diameter of the droplets. For very large Knudsen
numbers, the free molecular regime, growth is deter-
mined by the impingement rate of molecules onto the
surface of the droplet. This was already described inde-
pendently by Hertz and Knudsen [2,3]. In the limit of
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very small Knudsen numbers, the continuum regime,
droplet growth in an inert carrier gas is controlled by
diffusion. It is the transition zone between these two
regimes (Kn=a1) which is of particular scientific in-
terest. Several growth models describing droplet
growth for all Knudsen numbers have been developed.
Many of these models are based on the so-called flux
matching method. Then, the system is divided into
three regions, being a liquid phase and a continuum
gas phase, separated by a Knudsen layer having a
width of the order of the mean free path of the mol-
ecules. In this Knudsen layer gas kinetics apply, while
continuum gas relations are applicable beyond this
region. Assuming steady state conditions, mass and
energy fluxes can be equated and thus obtained. This
method was first applied by Fuchs [4] in 1934, who cal-
culated only the mass fluxes. In 1970, Fukuta and
Walter [5] extended the model to include the energy
fluxes. The models considered here are those by
Gyarmathy [6] and Young [7]. Gyarmathy modified a
model based on the flux matching method, after com-
paring it with experimental results. What remained
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Nomenclature

c specific heat capacity
d  diameter

fe  enhancement factor
h  specific enthalpy

k  thermal conductivity
m  molecular mass

n  number density

p  pressure

r radius

t time

¥  mass fraction

D diffusion coefficient
E  total energy flux

Knudsen number
latent heat

total mass

total mass flux

total heat flux
specific gas constant
saturation ratio
temperature
compressibility

Nﬂ%%@.g.gh?

Greek symbols

o coefficient

p  experimental coefficient
g  surface tension

A mean free path
p  specific density

Subscripts

¢ conduction

col colliding molecule
con condensation

d  droplet

ev  evaporation
g gas

i interface

id ideal

1 liquid

m  at intermediate temperature

p at constant pressure

S gas phase at the droplet surface
tar target molecule

v vapour

0  initial

oo at infinity

Superscripts

¢t continuum

fm free molecular
m molar

S saturated

was an interpolating fit between the continuum and
the free molecular regime.

The models will be compared with different sets of
experimentally obtained growth curves, each set rep-
resenting a different range of Knudsen numbers.
Growth curves of n-pentanol in helium at atmospheric
pressure and five different temperatures were pre-
viously obtained within the framework of an inter-
national collaboration on nucleation [8]. The curves
stretch from the transition to the continuum growth
regime. Furthermore, new experimental growth curves
of water in helium and nitrogen have been obtained.
These experiments were performed at elevated press-
ures. Therefore, the growth curves refer to the (near)
continuum regime. It will be demonstrated that the
validity of the growth models in this regime can be
checked by using the diffusion coefficient as a free par-
ameter.

2. Experiment

The growth curves are obtained using a pulse expan-
sion wave tube. This device can be used to study

nucleation as well as droplet growth, and has pre-
viously been described in Refs. [9-11]. Peters and Pai-
kert used a similar device [12], allowing them to
measure both the growth and subsequent evaporation
curves of the droplets [13]. The set-up, as it was used

P« Py

Pul<{ ¢  Hps

Ar-ion laser

HPS  high pressure section
LPS  low pressure section

PM photomultiplier Pa static pressure (Druck PDCR 200)
PD photodiode P« dynamic pressure (Kistler 603 B)
B bubbler unit RH humidity (Vaisala HMP234)

Fig. 1. Schematic view of the experimental set-up.
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here, is schematically shown in Fig. 1. The high press-
ure section (HPS) is filled with the gas—vapour mixture
under study, via a saturating bubbler set-up. The
vapour fraction can be varied by changing the
amounts of dry and saturated carrier gas let in. Hom-
ogeneity is established by the mixing pump in the mix-
ing circuit. The final vapour fraction is determined by
means of a specially calibrated Vaisala humidity sen-
sor, type HMP 234 [14]. When the diaphragm between
the HPS and LPS is ruptured, a homogeneous mono-
dispersed cloud of droplets is formed at the end wall
of the tube due to a short duration pulse in the super-
saturation. After this pulse, the gas—vapour mixture is
still in a supersaturated state, allowing the formed
droplets to grow. Since the nucleation (droplet for-
mation) rate is extremely nonlinearly dependent on the
supersaturation, no significant nucleation will occur
after the pulse.

The pulse-shaped maximum in the supersaturation is
directly related to the pressure signal, shown in Fig. 2.
Also shown are a schematic view of the tube and the
propagation of the subsequent pressure waves in time.
When the diaphragm ruptures, a shock wave travels
into the LPS and an expansion fan travels into the
HPS. When the head of the expansion fan reflects at
the end wall of the HPS, the pressure will start
decreasing. After the reflection has been completed, the
pressure at the end wall is constant again. In the mean-
time, the shock wave travelling into the LPS encoun-
ters a widening. As a consequence, a weak expansion

" reflections

3

Fig. 2. Wave propagation in the expansion wave tube with
the corresponding pressure and temperature signals at the end
wall.

fan followed by a small recompression wave is reflected
into the HPS, travelling behind the strong expansion
fan. This forms a small pressure dip at the beginning
of the low pressure plateau. Since the whole process is
adiabatic, the temperature signal will have a similar
profile as the pressure signal. As pressure and tempera-
ture drop, the gas—vapour mixture will become super-
saturated, with the saturation ratio S having a
maximum value during the pressure and temperature
dip.

Droplet size and density at the end wall of the HPS
are determined by a combination of constant angle
Mie scattering (CAMS) and light extinction, while the
pressure history at the endwall of the HPS is deter-
mined by means of a Kistler 603 B piezoelectric press-
ure gauge.

3. Theory

The theoretical description of droplet growth is
based on the assumption of quasi-steadiness. The
pressure is uniform, and the droplet is fixed in its en-
vironment. The droplet is assumed to be spherical and
in thermodynamic equilibrium with its surface. In the
cases studied here the vapour mass fraction is always
small (y, < 1).

3.1. The Young model

In the model by Young [7], the growing droplet is
divided into three different regions, as is shown in
Fig. 3. The first region is the droplet of radius rq. It is
assumed to be in equilibrium with its surface and to
have a uniform temperature T4. The second region is
the so-called Knudsen layer. It directly surrounds the
droplet and has a width of the order of the mean free
path of the molecules. The third region, beyond the
Knudsen layer, is the continuum region. The Knudsen
layer and the continuum region are separated by the
fictitious interface i at a distance r; of the centre of the
droplet.

interface i -~ i i
. " Knudsen layer continuum region
YVI YVUJ
T — -
\E
| >
Tap |—
S

Yvs droplet

Fig. 3. Schematic view of a growing droplet.
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In the continuum region mass and energy fluxes (M,
E) are related to differences in temperature and vapour
mass fractions (y,) at the interface i and the far field.
Using continuum gas relations the mass and energy
fluxes can be calculated [7,10]. The results are (see
Appendix B)

M = 4nrimem(yvi _yvoo)’ (1)
R 1.
E= iMva(Ti + Too) + dnknri(Ti — Too), 2

where p denotes the density and k the thermal conduc-
tivity of the gas—vapour mixture, D is the diffusion
coefficient, and ¢,y is the specific heat capacity of the
vapour at constant pressure. The subscript m denotes
that the quantities are evaluated at an intermediate
temperature 7Tp,. The right hand side of Eq. (2) con-
tains two terms: the first term describes the energy
transport directly resulting from mass transport, while
the second term describes the energy transport due to
conduction. Conservation of momentum yields that
the pressure p is uniform throughout the system, when-
ever the Mach number of the condensing vapour is
small.

In the Knudsen layer kinetic gas theory applies. All
the molecules that leave the droplet surface are
assumed to have a Maxwellian velocity distribution at
temperature T4. All molecules have fully thermally
accommodated before they reflect or evaporate. Hence,
although gas molecules do not condense, they do con-
tribute to the total energy flux. At the interface i a
Maxwellian velocity distribution is not appropriate,
since there a non-equilibrium situation exists. Young
[7] argues that the Grad velocity distribution [15,16]
gives a physically realistic representation of the diffu-
sive and convective mass and heat fluxes near the inter-
face. Consequently, assuming that molecules travelling
through the Knudsen layer do not collide, all the mol-
ecules coming towards the droplet have a Grad vel-
ocity distribution at temperature 7;. Using these
velocity distributions and the appropriate conditions
for incoming and outgoing molecules, the mass and
energy fluxes in the Knudsen layer can be calculated,
resulting in [7,10]

©)

— dr? OevPys Ry Ta _ OteonPryi Ry T
Y\ V2rR, Ty V2iR,T; )’

Pvi Rv Ti (va - %)

E = 4nr?
™ VIR.T,
R
pgleTi(ch_TL> l2 .
T, _Tl +_d ci
T |50
. R ,42
Mep Ty — M—=Ty| 1 — =%
+ Mcpy T4 5 d( 2’"i)
r3 o
— pMCPV(Td — 711) (4)

R, and R, are the specific gas constants of the vapour
and the gas, respectively, and «., and o, denote the
probability that an attempt to evaporate or condense
is successful. We will take both probabilities equal to
one, as is often assumed. The total heat flux by con-
duction Q; is given by

Oy = 4nkri(T; — Tao). ®)
The radius r; is defined as

:— =1 +2BKn, 6)
d

where f is an experimental coefficient with a best fit
value of f=0.75 [7]. The Knudsen number Kn is

given by

;L

Kn=—,
" 2I‘d

™)

where A is the mean free path of the molecules. This is
often defined as the distance between two collisions of

Mg/ Mgg

0.5

102 10" 10° 10’ 10° 10°
m, / mg
Fig. 4. Ratio of the mean free path of a vapour molecule in a

gas environment to that of a gas molecule in its own environ-
ment, as a function of their mass ratio.
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a molecule. However, a better definition is to take it as
the average step size of a random walk, i.e. the average
length over which a molecule ‘“‘loses its sense of direc-
tion”. From elementary gas kinetics [17] it can be
shown that

2
i= : , ®)
g T(deol + diar) ™ [ 72—

Mol +Miar

where n,, is the number density of target molecules,
while m and d denote the mass and collision diameter
of a molecule. Obviously, 4 depends on the masses of
the interacting molecules. Since we are considering di-
lute vapours, the dominant interaction for the mass
transport is vapour—gas collision. On the other hand,
for the energy transport the gas—gas interaction is
dominant. So, in principle, two different mean free
paths play a role. It is therefore useful to investigate
how the ratio of the masses of the interacting mol-
ecules influences the ratio of the different mean free
paths. This is shown in Fig. 4. Apparently, the ratio of
the mean free paths varies between 0.9 and 1.1 as long
as the ratio (m,/my) lies between 0.43 and 86 (assum-
ing d~m'/?). Hence, it is reasonable to use only one
mean free path for the cases considered here. This will
be the expression for the gas—gas interaction, being

, 1

A ngdgzn Nk 9)
The collision diameter d, is taken to be the Lennard-
Jones diameter of the carrier gas, determined from vis-
cosity data [18]. The number density n, is straightfor-
wardly determined from the gas density.

Now we have two expressions as well for the mass
as for the energy flux (Egs. (1)—(4)). To calculate the
variables M, E, Pvis Pei» Ta and T, two additional
equations are required. One of these is obtained by the
droplet energy equation. Since all the energy is pro-
duced on account of the condensing vapour, one can
write

. d . .
E = 5(Mdhd) = Mhq + Mshy, (10)

where My and hy are the total mass and the specific
enthalpy of the droplet, respectively. Since we are con-
sidering steady-state growth, the second term on the
right hand side of Eq. (10) is negligible. The remaining
equation can be rewritten as

E = —M(hys — ha) + Mhys = —ML + Mhys, 1n
where L is the latent heat of condensation. The sixth

equation, to make the system complete, is the equation
of state:

p
ZRT;

pgi+pvi = (12)

Here Z~Z, and is calculated from p and T, using an
equation of state proposed by Sychev et al. [19,20].
Note that in the original work by Young [7] all the
equations were written in terms of partial pressures.
Here we have rewritten them in terms of partial den-
sities, enabling us to take into account real gas effects.

3.2. The Gyarmathy model

Gyarmathy extensively describes [6] droplet growth,
including the relative flow between the droplet and the
gas mixture. As mentioned before, we will only con-
sider droplet growth in a quiescent environment.
Gyarmathy starts by comparing models based on the
flux matching method to experimental results, and
then suggests certain modifications. These modifi-
cations result in mass and energy fluxes that are
reduced to an interpolating fit between the free mol-
ecular limit and the continuum limit, and can be writ-
ten as [10]

. MM

M=—i—— 13
M+ ™ )

and,

L™

E=—7"604—. 14
E L B (1

The fluxes in the free molecular and continuum regime
are calculated in a similar manner as is done in the
Young model. The equations for the mass and energy
fluxes in the continuum regime are

M = 4nrapm Dim(Vvs — Yveo)s (15)
and

o 1o

E = SN e (Ta + T) - drrakn(Ta = Too).(16)

The equations describing the mass and energy fluxes in
the free molecular regime are

Mfm = dnr? YevPys Ry T _ %eonPyoo Ry Too 17)
W\ V2rR,Ts  V2nR T )



186 P. Peeters et al. | Int. J. Heat Mass Transfer 44 (2001) 181-193

+ Mf‘“( > )Td (18)
Eq. (17) is of course equal to the familiar Hertz—Knud-
sen relation. We have thus obtalned 51x equatlons for
the seven unknowns M, M Mf , E, E " and T, g
Eq. (11), relating the energy ﬂux to the mass flux, com-
pletes the description.

3.3. Stepwise growth calculations

As input variables to the growth models, we need
the temperature 7., and the densities p,,, p,,, and
Peco- Since these are not directly measured in the ex-
periments, they have to be calculated from other
(measured) quantities.

The far field temperature T, is obtained from the
dynamic pressure signal p(¢z) using the equation of
state proposed by Sychev et al. [19,20]. These tempera-
ture calculations also provide the compressibility Z.,
of the gas at far field conditions. Since the total press-
ure is uniform and the temperature difference Ty — T
is generally small, the compressibility is assumed to be
uniform and equal to Z,, throughout the gas phase.

Prior to the actual experiment, the initial molar
vapour fraction yy, is measured. Due to vapour de-
pletion, this fraction diminishes during droplet growth
according to:

Zooo Ry T 4

Pino(0) = iy = = gz mpyr(1), (19)
where ngo is the initial number density of droplets,
which depends on the nucleation pulse conditions pg
and T»o. Accordingly, the far field (mass) densities are
obtained from

(20)

voo = Vool 5o RT

p

N G— 21
ZooRy T @

The vapour density at the droplet surface is equal to
its (curvature corrected) saturated value,

1o} 20
L= v . 22
P = Z R TP\ p R Tara (22)

Here p} is the saturated pressure of the pure vapour

and f.(p, T) is the enhancement factor, accounting for
enhanced vapour pressures at elevated total pressures
[10,21] (fe, n,(250 K, 50 bar) = 1.27), and o is the sur-
face tension.

As a starting point for a growth calculation, the in-
itial radius of the droplets has to be known. According
to Muitjens [22], nucleated clusters can be assumed
stable — i.e. their finite probability of re-evaporation
has become negligible — if they contain at least twice
the number of molecules of the critical cluster. Using
classical nucleation theory [10,12] the following re-
lation is obtained

20
g0 = 23— 23
r'do p R Tn S’ (23)

where S denotes the supersaturation of the gas—vapour

mixture, which is defined as
_Wr
Jepy

24

For the derivation see Refs. [10,21].

The enhancement factor f;, saturated vapour press-
ure py, surface tension o, liquid density p, and latent
heat L are evaluated at the droplet temperature 7. All
other physical properties involved are computed at an
intermediate temperature 7,,. According to Hubbard
et al. [23], a one-third rule is appropriate:

w= 30Ty + ). 25)

Using the relations established above, all input vari-
ables for the growth models can be recalculated each
time step. The remaining unknowns are then iteratively
solved from the system of equations for both models.
Finally, the droplet radius is updated each time step
using conservation of mass:

dl‘d M

=— . 26
ds dnpr} (26)

The program calculating the growth patterns is written
for the FORTRAN compiler, using several NAG rou-
tines.

4. Results and discussion

First, the growth models will be compared with ex-
perimental droplet growth curves of the n-pentanol—
helium system, which stretch from the transition to the
continuum regime. Then, the models will be compared
with new experimental results considering droplet
growth of water in helium and nitrogen, respectively,
performed at pressures ranging from 10 to 50 bar.
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Consequently, these growth curves are situated in the
near continuum regime, and hence, can be used to
determine the diffusion coefficients of water in helium
and water in nitrogen. Since the value of pD should be
independent of pressure, this will provide an indepen-
dent check of the validity of the growth models.

4.1. n-Pentanol-helium

As part of an international collaboration, nucleation
experiments of n-pentanol in helium were performed at
Eindhoven University of Technology [8]. Since droplet
growth curves are used as a tool to determine nuclea-
tion rates, these experiments are now used as a refer-
ence system to check the accuracy of the growth
models. The nucleation experiments were performed at
pressures of approximately 1 bar, resulting in exper-
imental droplet growth curves that start in the tran-
sition regime (0.01 < Kn < 1).

In Fig. 5 droplet growth curves of n-pentanol in
helium are shown at four different temperatures. The
temperatures indicated are averaged over the low
pressure plateau. The error bars of the experimental
data fall within the size of the markers. The disconti-
nuities in the growth curves after about 15 ms are
caused by the arrival of the shock wave reflected from
the low pressure section end wall. This causes a posi-
tive jump in pressure and temperature, and conse-
quently the droplets start to evaporate instantaneously.
The experiment at the temperature of 260 K shows a
decrease of the growth rate at the end of the growth
curve, caused by depletion of the vapour. Both models
are compared with 42 experiments in total. For the
lower temperatures (248 K < T < 256 K) the Gyar-
mathy model shows best agreement with the exper-

2
— Young
---- Gyarmathy 264K
1.5+ O experiment
~
£
= 41
NE’ 260K
05 r ™ 256K
""""""""" . 248K
0
0 5 10 15 20

time (ms)

Fig. 5. Droplet growth curves of n-pentanol in helium, at
pressures near | bar.

imental results while the Young model predicts too
large growth rates. For the higher temperatures (260 K
< T < 264 K) the experimental growth curves seem to
shift towards the Young model. In Fig. 6 two different
graphs are combined in one diagram. First, the pre-
dicted mass fluxes, scaled with their free molecular
flow values M™, are plotted as a function of Kn.
Clearly, the Gyarmathy model predicts a much wider
transition regime than the Young model, resulting in
mass fluxes that are smaller in the transition regime.
This can now be used to help explain the different
agreement of the model predictions at different tem-
peratures. Therefore, the experiments shown in Fig. 5
are also plotted in Fig. 6, but now as ‘“‘trajectories”
Kn(t) (right axis). As can be seen, each temperature
corresponds to a different range of Kn, attaining
smaller Kn values at higher temperatures. Looking at
the “trajectories” Kn(t), it can be concluded that the
change from free molecular to transition regime starts
at too high Kn values for the Young model, and the
Gyarmathy model predicts this transition more accu-
rately. On the other hand, the change from the tran-
sition to the continuum regime is better described by
the Young model, where the Gyarmathy model under-
estimates the mass fluxes.

4.2. Water—helium and water—nitrogen

The droplet growth experiments of water in helium
or nitrogen are performed at high pressures (10 bar <
p < 50 bar) and low temperature (T = 247 K). The
experimentally obtained radius squared is plotted as a
function of time. The radii squared as they follow
from the model predictions of Young and Gyarmathy
are also plotted as functions of time. In these models

7 15
1 i | eCccceoo oo
o i /
A
Eé\‘ e/ D//
8 b ——— Gyarmathy {10
c -D\B \ o Mcl/Mlm /&)\
S 05 a7 o experiment 3
E o
0.4
i N T=248K 5
!
03 |_ \f *~ T-256K
7" T=264K
0.2 \l Ll Ll Ll Ll
10" 10° 10'
Kn

Fig. 6. n-pentanol in helium, at pressures near 1 bar. Left
axis: scaled mass flux as a function of Kn (model). Right axis:
time evolution of Kn (experiment).
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the Fuller correlation [18] is used as an Ansatz value
for the diffusion coefficient. In this way, small vari-
ations in the growth curve that originate from small
variations in the pressure and temperature, are
accounted for. Then, the theoretical growth curves are
fitted to the experimental results using the diffusion
coefficient as a fit parameter. The fit is always per-
formed in a region where the vapour depletion is still
negligible, in order to minimize the uncertainty in the
value of the diffusion coefficient. This procedure is
repeated at each pressure and temperature for a num-
ber of experiments.

In Fig. 7 experimental and theoretical growth curves
of the water—helium system are shown. The theoretical
curves are obtained using the Fuller correlation [18]
for the diffussion coefficient. The temperature during
the growth of the droplets is approximately 247 K.
The average pressures are 11, 27, and 43 bar. The
error bars of the experimental data fall within the size
of the markers, unless indicated otherwise. The larger
errors are caused by the broadening of the Mie peaks
due to the slower growth of the droplets. Hence, es-
pecially when there is some additional noise in the
scattered intensity, the position of the extremum is less
precise. In Fig. 8 the fitted diffusion coefficients for the
water—helium system are plotted. The product of the
specific density p, and the diffusion coefficient Dy,
should be independent of the pressure. This holds well
for the results obtained with the Young model. How-
ever, the fitted values obtained using the Gyarmathy
model decrease significantly as the pressure increases.
This can again be explained by looking at the pre-
dicted mass fluxes for the different ranges of Kn values
covered at each pressure. This is shown in Fig. 9. Note
that the mass fluxes are now scaled with their con-
tinuum flow values. Looking at the 11 bar experiment
in the right plot of Fig. 9 it can be seen that for this

— Young i
----- Gyarmathy g
0.1 O experiment

= -
2

11bar
“00.05 |

0
0 5 10 15

t (ms)

Fig. 7. Droplet growth curves of water in helium (7~247 K).

14
- Fuller
. ¢ Young
o 131 T o Gyarmathy
— ]
£ |
el |
A S
= < T 1
Q 1 o o
S 1] L 1
247 K
10 ' : : -
0 10 20 30 40 50
p (bar)

Fig. 8. ppDm versus p for the water—helium system. The diffu-
sion coefficients D, are obtained by fitting the Young model
and the Gyarmathy model to experimental growth curves.

experiment the Kn value is in the range 0.015 < Kn <
0.02. The Young model predicts (nearly) continuum
growth for these values of Kn, while according to the
Gyarmathy model 0.85 < M/MCl < 0.9. Assuming the
Young model is correct, the predicted mass flux
according to the Gyarmathy model is about 10% too
low, corresponding to the about 10% too high value
of p,,Dm (Fig. 8). As pressure increases Kn becomes
smaller and the Gyarmathy model also approaches the
continuum limit, making the difference between the
two models smaller. As a result the diffusion coefficient
fitted with the Gyarmathy model approaches the one
fitted with the Young model. The transition regime

10
--- Young
10 — Gyarmathy
T 8
g 08 eg
S p=43bar f° ) S =
p=27bar f\ 4
0.6 p=11bar
2
0.4 ‘ 0
0.01 0.02 0.03 0.1
Kn

Fig. 9. Water in helium (7x247 K). Left axis: scaled mass
flux as a function of Kn (model). Right axis: time evolution of
Kn (experiment).
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0.15
— Young
----- Gyarmathy
O  experiment
o~ 0.1
£ 4
5 1bar —, //
N 4
o
0.05
44bar
0 !
0 10 20 30

t (ms)

Fig. 10. Droplet growth curves of water in nitrogen (7=x247
K).

according to the Gyarmathy model stretches too far
into the continuum regime. The correct experimental
diffusion coefficient is therefore given by the fits with
the Young model.

For the water—nitrogen system, generally the same
holds as for the water—helium system. Experimental
and theoretical (not fitted) growth curves are shown in
Fig. 10. Again, the error bars of the experimental data
fall within the size of the markers, unless indicated
otherwise. The resulting experimentally fitted diffusion
coefficients using the two models are shown in Fig. 11.
The trends observed are the same as for the water

28
_ ---- Fuller
o
—~27 | Young
‘w 4 o  Gyarmathy
£ 26 [ T
(@) N O
=5 1
N 25+
o o
©
o
— 24 - |
247 K -
23 - : : -
0 10 20 30 40 50

p (bar)

Fig. 11. p,,Dn, vs. p for the water—nitrogen system. The diffu-
sion coefficients D,,, are obtained by fitting the Young model
and the Gyarmathy model to experimental growth curves.

helium system. Looking at the range of Knudsen num-
bers for each pressure and the matching ratio of
M/MCl (Fig. 12), it can again be concluded that the
transition regime according to the Gyarmathy model
stretches too far into the continuum regime. Since the
10 bar result of p,, Dy, fitted with the Young model is a
bit higher than the 25 and 40 bar results, one could
say that the same holds for the Young model,
although less severe. However, the fitted values of
pmDm are independent of pressure, within the exper-
imental error. The experimental diffusion coefficients
fitted with the Young model are therefore again con-
sidered to be correct.

5. Discussion

From the results stated above, it follows that the
quality of both models, depends on the Knudsen range
involved. Varying the values of the parameters
Ocons %evs and f does not result in an improved per-
formance of the models. The sensitivity of the Young
model to the parameter f is shown in Fig. 13. For

values in between 0.75 and 3 the M/Mfm values are
only weakly dependent on f. Still, at low Knudsen
n_umbg]{s, a value f = 3 would yield too high values of
M/M ', which have not been observed.

As mentioned earlier, Peters and Paikert also studied
droplet growth using a shock tube. In their paper pub-
lished in 1989 [12], they compared their experimental
results to a model by Gyarmathy, different from the
one used here. The model starts from pure continuum
growth, and adds a correction term which depends on
the size of the mean free path of the molecules. They
found good agreement with their experimental results,

27bar f\n 10
0.8 — Young
----- Gyarmathy 11bar
o—o experiment
0.7 : 0
0.002 0.003 0.01 0.02
Kn

Fig. 12. Water in nitrogen (7'~247 K). Left axis: scaled mass
flux as a function of Kn (model). Right axis: time evolution of
Kn (experiment).



190 P. Peeters et al. | Int. J. Heat Mass Transfer 44 (2001) 181-193

except for very large Knudsen numbers (Kn > 500). In
their paper of 1994 [13], a different growth model was
used to compare their experimental results to. They
used the original expressions by Young [7] as a starting
point, and modified these by making several approxi-
mations. It can be shown that their resulting ex-
pressions are very similar to the ones of the
Gyarmathy model as it is used here. For the mass flux
we obtain the same result if we take the temperature
of the droplet and the far field to be equal in our ex-
pression. In order to get the same result for the energy
flux, the first term on the right-hand side in our Eq.
(16) and the last term on the right-hand side of our
Eq. (18) have to be neglected. Furthermore, the mean
free path as it is defined by Young has to be inserted.
Their model predictions and experimental results show
excellent agreement for Knudsen numbers down to
about Kn = 0.02, which is in agreement with our ob-
servations. Rodemann and Peters [24] later used the
same model, and extended it to include the growth of
binary droplets. Again, good agreement was found
with experimental results (Kn < 0.02), which were now
obtained using a piston-expansion-tube.

To evaluate our newly found diffusion coefficient
data they are compared with literature data. Therefore,
in Figs. 14 and 15 they are shown together with
reported data for the water—helium [25,26,28] and
water—nitrogen system [25,27], respectively. The
reported data are in terms of pressure times diffusion
coefficient. This is independent of pressure whenever
the ideal gas law is valid and the compressibility Z
thus equals one. Our data of density times diffusion
coefficient pD have to be multiplied by the gas con-

1.2
1
E
=0.8
=
0.6
— Young
----- Gyarmathy
0.4 ~— 0 ]
10° 10 10

Kn

Fig. 13. f-Dependency of the Young model. The Gyarmathy
model is also shown in order to get a clear view of the relative
changes.
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Fig. 14. Diffusion coefficient data of water in helium.

stant R and temperature 7 in order to compare them
to the reported results. For the water—helium system
the discrepancies with the data previously found in our
group by Luijten et al. [25] are quite large. However,
the newly found data are regarded as more accurate,
for two reasons. First, the determination of the vapour
fraction has been improved. But more importantly, the
existing data were obtained from fits with the Gyar-
mathy model, which was then assumed to be correct.
Therefore, these data have been reevaluated using the
Young model, and the corrected results are also shown
in Fig. 14. As can be seen, the data are consistent
within the experimental error. For the water—nitrogen
system the results are obtained at smaller Kn values,
where the difference between the Gyarmathy model
and the Young model is very small. Hence, the differ-

5
-------- Fuller
— o O'Connell
o AT & Luijten o
NE ©  present data o
g 3 =l
S 5
@) 5
2 O;K
2
1 , . .
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Fig. 15. Diffusion coefficient data of water in nitrogen.
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ence in (pD);; when using either the Gyarmathy model
or the Young model is negligible and the reported data
by Luijten et al. [25] already agree well with our newly
found data.

The Fuller correlation, which was used as a refer-
ence value for the diffusion coefficient, is also shown in
both plots (dotted line). Apparently, this correlation
gives diffusion coefficients over a quite large tempera-
ture range with error bounds smaller than 5%.

6. Conclusions

The droplet growth models by Gyarmathy and
Young have been compared with experimental results.
In all cases the model by Gyarmathy predicts a much
broader transition regime in terms of the Knudsen
number. For the n-pentanol-helium experiments this
appears to be correct at the upper end of the spectrum
(large Kn). However, at the lower part of the spectrum
(small Kn), the Gyarmathy model predicts too low
mass fluxes, and the Young model yields more accu-
rate results. This is consistent with the new results
obtained from the water—helium and water—nitrogen
experiments, which were all located near the con-
tinuum regime. An incorrect pressure dependence of
the product pD is found, when the diffusion coefficient
is used to fit the Gyarmathy model to the experimental
growth curves. This can again be attributed the tran-
sition regime stretching too far into the continuum
regime, according to the Gyarmathy model. The
Young model gives good results for the near con-
tinuum regime, and new experimental diffusion coeffi-
cient data have thus been obtained. These data are
found to be in good agreement with literature data
and are well described by the Fuller correlation.

Appendix A. Physical properties

Helium
M = 4.003 (kg kmol™") [18]
d = 0.2551 (nm) [18]
C, = 5R/2 (J mol™' K™") [18]
k = —2.449 x 1072 + 1.124 x 10737 — 2.929 x
107572 + 4.493 x 107°7° — 2.518 x 10727* (W
m~' K™ [29]

Nitrogen
M = 28.013 (kg kmol™") [18]
d = 0.3798 (nm) [18]
C, = 31.15 — 1.357 x 107°T + 2.680 x 107°T* —
1.168 x 107873 (J mol~' K1) [18]
k° = —6.683 x 107* + 1.0558 x 107*T — 5.5989 x
107372 (W m~! K1) [30]

k = k°(T) +0.025028 exp[0.535Lrc — 1] (W m™'
K™ [18]

n-Pentanol
M = 88.15 (kg kmol™") [18]
d = 0.6677 (nm) [18]
C, = 3.869 +0.50457 — 2.639 x 107472 + 5.120 x
107873 (J mol~! K1) [18]
p’ = 133.324exp(90.08 —9788/T—9.901n T') (Pa)
(32]
B et i/3
pr=2iga(l =T/T)",
ag = 270; a; = 1930.2; a, = — 8414.8;
as = 19226.0; a, = — 18559.3; as = 6555.7 (kg
m~3) [33]

L =67.55x 103(1 — T/T,)*%7? exp(0.8195T/T.) (J
mol™") [34]

oo = 2.6855 x 1072 — 7.889 x 10~5(T — 273.15) (N
m~ 1) [31]

Water
M = 18.015 (kg kmol™") [18]
d = 0.2641 (nm) [18]
Cp, = 322441924 x 10737+ 1.055 x 107372
3.596 x 10=°T3 (J mol ™! K1) [18]
P =610.8 exp[—5.1421 In(T/273.15) — 6828.77(1/T —
1/273.15)] (Pa) [35]
P1=999.84 +0.086(T—273.15)—0.0108(T—273.15)>
(kg m~?) [36]
L =5.382 x 103[7.08(1 — T/T,)*** +
T/T.)"*°] (J mol™") [18]
o0 = 0.127245 — 1.89845 x 10747 (fitted for T <
268 K) (N m™) [37]

3.767(1 —

Al. Binary diffusion, vapour pressure enhancement and
surface tension

For n-pentanol-helium the Chapman—Enskog corre-
lation is used [18]. Required values for the Lennard-
Jones parameters ¢ and o were fitted to literature diffu-
sivity data by Zdimal [31], resulting in ¢2/kg = 55.75
K and o1 =0.4614 nm. After substitution of these
values, and eliminating the pressure in favour of the
mass density, the remaining relation is

pD =2.174 x 1077Q; 1 (T/K)"> (kg m ™! s 1)

The collision integral Qp is a function of the dimen-
sionless temperature T = T/¢j, [18]:

1.06036

D=
70.15610

0.19300
exp(0.476351)

1.03587
exp(1.529961)

+ 1.76474
exp(3.894117)

For all helium systems, f. is evaluated including only
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the Poynting-effect:

Mp— psat):|.

Al
pIRT (AD

o=

Enhancement factors for water in nitrogen are given
by Ref. [10]

fe =exp[B(T) x (p — peat) ] (A2)
with p in bar and where
b(T) = 4.420 x 1072 —3.03 x 10T+ 7.31

x 107772 =598 x 107173, (A3)

For water—nitrogen, a pressure dependent term is
added to the surface tension, resulting in [10]

6=0p—6X IOISkBTln[p+ 326].

326 (Ad)

Here, the pressure p should again be taken in bar.

Appendix B. Continuum fluxes

The conservation of mass
dr,
4 -0 Bl
o [reu] (B1)
can be rewritten in the form

d
a[rzpv(u—}-vv)—{—rng(u—{— vg)] =0. (B2)
Here the partial densities (p = p, + p,) and the defi-
nition of diffusion fluxes (p,vy + p vy = 0) were used.
Assuming that the gas does not enter the droplet (u +
v, = 0) this can be written as

St ] =0 (83)

Assuming steady state, integration of Egs. (Bl) and
(B3) give the constant mass flux

M = 4nr’pu = dur’p,(u + ). (B4)
Writing the diffusion flux as:

d
PyVy = —pD—&, (BS)
dr p
and combining this with Eq. (B4), the following result
can be obtained

dyy

M1 —yy) = —4nr’pD—=",
dr

(B6)

where the vapour mass fraction y, = p,/p was intro-
duced. For small vapour mass fractions (yy < 1) the
term pD is independent of y,, and Eq. (B6) can be
readily integrated, yielding

y 1- Voo
M:47rri2pD ln< 1 J; ) B7)

For small vapour mass fractions the logarithmic term
can be linearised to give

M= 471”12PD()/vi — Vvoo)- (B8)

From the conservation of energy

%[pu(h + u2/2) + )‘2(}] =0, (B9)

the (steady state) total energy flux can be obtained by
integration:

E= 4m‘2pu(h + u2/2) + 4mrq. (B10)

The heat flux per unit area can be written as
. dr
qg= —ka +hypyvy + hgpgve, (B11)

where the first term on the right is a conduction term,
and the second and third are diffusion terms. Combin-
ing Eq. (B10) with Egs. (B4) and (B11), neglecting the
kinetic term, and keeping in mind that p,vy + p,vy = 0
and = (p,/p)hy + (1 — p,/p)hg, the following result
can be obtained

. dr
E = Mcy T+ 4nr2ka, (B12)

where h, = ¢, T was used. Integration of this equation
yields

E— Mey T, (mv
E-MeTi _ |

- . P =exp( — ¢€). B13
E— Mep T 47mk) p(—o) (B13)

For small ¢ this can be approximated as

E—Mcvai

— =1—c+eé?)2, Bl14
E — Mep, To / @14
resulting in
.1 .

E= E(Ti + Too)epy M + 4nrik(T; — Too). (B15)

When a first order instead of a second order approxi-
mation is made the first term on the right should be
replaced by MchToo. For the cases studied in this
paper several numerical calculations were carried out
both with and without the approximations of the log-



P. Peeters et al. | Int. J. Heat Mass Transfer 44 (2001) 181-193 193

arithm and exponential, and no significant differences
were found.
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