
Transitional droplet growth and di�usion coe�cients

P. Peeters*, C.C.M. Luijten, M.E.H. van Dongen

Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received 26 October 1999; received in revised form 4 February 2000

Abstract

The droplet growth models of Gyarmathy and Young, valid for arbitrary Knudsen numbers, are compared with
experimental growth results obtained from expansion wave tube experiments. Growth experiments of n-pentanol in
helium were performed at approximately 1 bar, resulting in growth curves stretching from the transition regime

�Kn11� to the continuum regime �Kn� 1). Droplet growth experiments of water in helium and water in nitrogen
were performed at elevated pressures, when the mean free path is small; hence, these growth curves are situated near
the continuum regime. For Kn > 0.1, the Gyarmathy model appears to describe the experimental growth curves
better than the Young model. However, for Kn < 0.02, the Young model gives the best results. For the water±

helium and water±nitrogen systems new experimental di�usion coe�cients are obtained, which are in good
agreement with literature data. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The growth of liquid droplets from a supersaturated
vapour is a classical subject of interest in many ®elds
of application. It is one of the key processes in aerosol
science and cloud physics. It is important for conden-

sate separation. On a more fundamental level, it is
directly related to the investigations of nucleation, the
formation of nuclei from which droplets grow. A

review of theoretical droplet growth models is provided
by Seinfeld and Pandis [1].
A very important parameter, when considering droplet

growth, is the Knudsen number Kn. It is de®ned
as the ratio of the mean free path of the molecules to
the diameter of the droplets. For very large Knudsen
numbers, the free molecular regime, growth is deter-

mined by the impingement rate of molecules onto the
surface of the droplet. This was already described inde-
pendently by Hertz and Knudsen [2,3]. In the limit of

very small Knudsen numbers, the continuum regime,

droplet growth in an inert carrier gas is controlled by

di�usion. It is the transition zone between these two

regimes �Kn11� which is of particular scienti®c in-

terest. Several growth models describing droplet

growth for all Knudsen numbers have been developed.

Many of these models are based on the so-called ¯ux

matching method. Then, the system is divided into

three regions, being a liquid phase and a continuum

gas phase, separated by a Knudsen layer having a

width of the order of the mean free path of the mol-

ecules. In this Knudsen layer gas kinetics apply, while

continuum gas relations are applicable beyond this

region. Assuming steady state conditions, mass and

energy ¯uxes can be equated and thus obtained. This

method was ®rst applied by Fuchs [4] in 1934, who cal-

culated only the mass ¯uxes. In 1970, Fukuta and

Walter [5] extended the model to include the energy

¯uxes. The models considered here are those by

Gyarmathy [6] and Young [7]. Gyarmathy modi®ed a

model based on the ¯ux matching method, after com-

paring it with experimental results. What remained
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was an interpolating ®t between the continuum and
the free molecular regime.

The models will be compared with di�erent sets of
experimentally obtained growth curves, each set rep-
resenting a di�erent range of Knudsen numbers.

Growth curves of n-pentanol in helium at atmospheric
pressure and ®ve di�erent temperatures were pre-
viously obtained within the framework of an inter-

national collaboration on nucleation [8]. The curves
stretch from the transition to the continuum growth
regime. Furthermore, new experimental growth curves
of water in helium and nitrogen have been obtained.

These experiments were performed at elevated press-
ures. Therefore, the growth curves refer to the (near)
continuum regime. It will be demonstrated that the

validity of the growth models in this regime can be
checked by using the di�usion coe�cient as a free par-
ameter.

2. Experiment

The growth curves are obtained using a pulse expan-
sion wave tube. This device can be used to study

nucleation as well as droplet growth, and has pre-
viously been described in Refs. [9±11]. Peters and Pai-

kert used a similar device [12], allowing them to
measure both the growth and subsequent evaporation
curves of the droplets [13]. The set-up, as it was used

Nomenclature

c speci®c heat capacity
d diameter
fe enhancement factor

h speci®c enthalpy
k thermal conductivity
m molecular mass

n number density
p pressure
r radius

t time
y mass fraction
D di�usion coe�cient
_E total energy ¯ux

Kn Knudsen number
L latent heat
M total mass
_M total mass ¯ux
_Q total heat ¯ux
R speci®c gas constant

S saturation ratio
T temperature
Z compressibility

Greek symbols
a coe�cient
b experimental coe�cient

s surface tension

l mean free path
r speci®c density

Subscripts
c conduction
col colliding molecule

con condensation
d droplet
ev evaporation

g gas
i interface
id ideal
l liquid

m at intermediate temperature
p at constant pressure
s gas phase at the droplet surface

tar target molecule
v vapour
0 initial

1 at in®nity

Superscripts

ct continuum
fm free molecular
m molar
s saturated

Fig. 1. Schematic view of the experimental set-up.
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here, is schematically shown in Fig. 1. The high press-
ure section (HPS) is ®lled with the gas±vapour mixture

under study, via a saturating bubbler set-up. The
vapour fraction can be varied by changing the
amounts of dry and saturated carrier gas let in. Hom-

ogeneity is established by the mixing pump in the mix-
ing circuit. The ®nal vapour fraction is determined by
means of a specially calibrated Vaisala humidity sen-

sor, type HMP 234 [14]. When the diaphragm between
the HPS and LPS is ruptured, a homogeneous mono-
dispersed cloud of droplets is formed at the end wall

of the tube due to a short duration pulse in the super-
saturation. After this pulse, the gas±vapour mixture is
still in a supersaturated state, allowing the formed
droplets to grow. Since the nucleation (droplet for-

mation) rate is extremely nonlinearly dependent on the
supersaturation, no signi®cant nucleation will occur
after the pulse.

The pulse-shaped maximum in the supersaturation is
directly related to the pressure signal, shown in Fig. 2.
Also shown are a schematic view of the tube and the

propagation of the subsequent pressure waves in time.
When the diaphragm ruptures, a shock wave travels
into the LPS and an expansion fan travels into the

HPS. When the head of the expansion fan re¯ects at
the end wall of the HPS, the pressure will start
decreasing. After the re¯ection has been completed, the
pressure at the end wall is constant again. In the mean-

time, the shock wave travelling into the LPS encoun-
ters a widening. As a consequence, a weak expansion

fan followed by a small recompression wave is re¯ected
into the HPS, travelling behind the strong expansion

fan. This forms a small pressure dip at the beginning
of the low pressure plateau. Since the whole process is
adiabatic, the temperature signal will have a similar

pro®le as the pressure signal. As pressure and tempera-
ture drop, the gas±vapour mixture will become super-
saturated, with the saturation ratio S having a

maximum value during the pressure and temperature
dip.
Droplet size and density at the end wall of the HPS

are determined by a combination of constant angle
Mie scattering (CAMS) and light extinction, while the
pressure history at the endwall of the HPS is deter-
mined by means of a Kistler 603 B piezoelectric press-

ure gauge.

3. Theory

The theoretical description of droplet growth is

based on the assumption of quasi-steadiness. The
pressure is uniform, and the droplet is ®xed in its en-
vironment. The droplet is assumed to be spherical and

in thermodynamic equilibrium with its surface. In the
cases studied here the vapour mass fraction is always
small �yv � 1).

3.1. The Young model

In the model by Young [7], the growing droplet is

divided into three di�erent regions, as is shown in
Fig. 3. The ®rst region is the droplet of radius rd. It is
assumed to be in equilibrium with its surface and to

have a uniform temperature Td. The second region is
the so-called Knudsen layer. It directly surrounds the
droplet and has a width of the order of the mean free
path of the molecules. The third region, beyond the

Knudsen layer, is the continuum region. The Knudsen
layer and the continuum region are separated by the
®ctitious interface i at a distance ri of the centre of the

droplet.

Fig. 3. Schematic view of a growing droplet.

Fig. 2. Wave propagation in the expansion wave tube with

the corresponding pressure and temperature signals at the end

wall.
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In the continuum region mass and energy ¯uxes � _M,
_E� are related to di�erences in temperature and vapour

mass fractions ( yv) at the interface i and the far ®eld.
Using continuum gas relations the mass and energy
¯uxes can be calculated [7,10]. The results are (see

Appendix B)

_M � 4prirmDm�yvi ÿ yv1�, �1�

_E � 1

2
_Mcpv�Ti � T1� � 4pkmri�Ti ÿ T1�, �2�

where r denotes the density and k the thermal conduc-
tivity of the gas±vapour mixture, D is the di�usion

coe�cient, and cpv is the speci®c heat capacity of the
vapour at constant pressure. The subscript m denotes
that the quantities are evaluated at an intermediate

temperature Tm. The right hand side of Eq. (2) con-
tains two terms: the ®rst term describes the energy
transport directly resulting from mass transport, while
the second term describes the energy transport due to

conduction. Conservation of momentum yields that
the pressure p is uniform throughout the system, when-
ever the Mach number of the condensing vapour is

small.
In the Knudsen layer kinetic gas theory applies. All

the molecules that leave the droplet surface are

assumed to have a Maxwellian velocity distribution at
temperature Td. All molecules have fully thermally
accommodated before they re¯ect or evaporate. Hence,

although gas molecules do not condense, they do con-
tribute to the total energy ¯ux. At the interface i a
Maxwellian velocity distribution is not appropriate,
since there a non-equilibrium situation exists. Young

[7] argues that the Grad velocity distribution [15,16]
gives a physically realistic representation of the di�u-
sive and convective mass and heat ¯uxes near the inter-

face. Consequently, assuming that molecules travelling
through the Knudsen layer do not collide, all the mol-
ecules coming towards the droplet have a Grad vel-

ocity distribution at temperature Ti. Using these
velocity distributions and the appropriate conditions
for incoming and outgoing molecules, the mass and
energy ¯uxes in the Knudsen layer can be calculated,

resulting in [7,10]

 
1ÿ acon

r 2d
2r 2i

!
_M

� 4pr 2d

�
aevrvsRvTd����������������

2pRvTd

p ÿ aconrviRvTi���������������
2pRvTi

p
�
, �3�

_E � 4pr 2d

24rviRvTi

�
cpv ÿ Rv

2

�
���������������
2pRvTi

p

�
rgiRgTi

�
cpg ÿ Rg

2

�
���������������
2pRgTi

p
35�Td ÿ Ti � � r 2d

2r 2i

_Qci

� _McpvTd ÿ _M
Rv

2
Td

 
1ÿ r 2d

2r 2i

!

ÿ r 2d
2r 2i

_Mcpv�Td ÿ Ti �: �4�

Rv and Rg are the speci®c gas constants of the vapour
and the gas, respectively, and aev and acon denote the

probability that an attempt to evaporate or condense
is successful. We will take both probabilities equal to
one, as is often assumed. The total heat ¯ux by con-

duction _Qci is given by

_Qci � 4pkri�Ti ÿ T1�: �5�
The radius ri is de®ned as

ri

rd

� 1� 2bKn, �6�

where b is an experimental coe�cient with a best ®t
value of b � 0:75 [7]. The Knudsen number Kn is
given by

Kn � l
2rd

, �7�

where l is the mean free path of the molecules. This is

often de®ned as the distance between two collisions of

Fig. 4. Ratio of the mean free path of a vapour molecule in a

gas environment to that of a gas molecule in its own environ-

ment, as a function of their mass ratio.
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a molecule. However, a better de®nition is to take it as
the average step size of a random walk, i.e. the average

length over which a molecule ``loses its sense of direc-
tion''. From elementary gas kinetics [17] it can be
shown that

l � 2

ntarp�dcol � dtar � 2
���������������

mtar

mcol�mtar

q , �8�

where ntar is the number density of target molecules,

while m and d denote the mass and collision diameter
of a molecule. Obviously, l depends on the masses of
the interacting molecules. Since we are considering di-

lute vapours, the dominant interaction for the mass
transport is vapour±gas collision. On the other hand,
for the energy transport the gas±gas interaction is
dominant. So, in principle, two di�erent mean free

paths play a role. It is therefore useful to investigate
how the ratio of the masses of the interacting mol-
ecules in¯uences the ratio of the di�erent mean free

paths. This is shown in Fig. 4. Apparently, the ratio of
the mean free paths varies between 0.9 and 1.1 as long
as the ratio �mv=mg� lies between 0.43 and 86 (assum-

ing d0m1=3). Hence, it is reasonable to use only one
mean free path for the cases considered here. This will
be the expression for the gas±gas interaction, being

l � 1

ngd 2
gp

���
2
p : �9�

The collision diameter dg is taken to be the Lennard±

Jones diameter of the carrier gas, determined from vis-
cosity data [18]. The number density ng is straightfor-
wardly determined from the gas density.

Now we have two expressions as well for the mass
as for the energy ¯ux (Eqs. (1)±(4)). To calculate the
variables _M, _E, rvi, rgi, Td and Ti, two additional

equations are required. One of these is obtained by the
droplet energy equation. Since all the energy is pro-
duced on account of the condensing vapour, one can

write

_E � d

dt
�Mdhd � � _Mhd �Md

_hd, �10�

where Md and hd are the total mass and the speci®c

enthalpy of the droplet, respectively. Since we are con-
sidering steady-state growth, the second term on the
right hand side of Eq. (10) is negligible. The remaining

equation can be rewritten as

_E � ÿ _M�hvs ÿ hd � � _Mhvs � ÿ _ML� _Mhvs, �11�

where L is the latent heat of condensation. The sixth
equation, to make the system complete, is the equation
of state:

rgi � rvi �
p

ZRTi

: �12�

Here Z1Zg and is calculated from p and T1 using an
equation of state proposed by Sychev et al. [19,20].
Note that in the original work by Young [7] all the

equations were written in terms of partial pressures.
Here we have rewritten them in terms of partial den-
sities, enabling us to take into account real gas e�ects.

3.2. The Gyarmathy model

Gyarmathy extensively describes [6] droplet growth,
including the relative ¯ow between the droplet and the

gas mixture. As mentioned before, we will only con-
sider droplet growth in a quiescent environment.
Gyarmathy starts by comparing models based on the

¯ux matching method to experimental results, and
then suggests certain modi®cations. These modi®-
cations result in mass and energy ¯uxes that are

reduced to an interpolating ®t between the free mol-
ecular limit and the continuum limit, and can be writ-
ten as [10]

_M �
_M

ct _M
fm

_M
ct � _M

fm
�13�

and,

_E �
_E

ct _E
fm

_E
ct � _E

fm
: �14�

The ¯uxes in the free molecular and continuum regime
are calculated in a similar manner as is done in the
Young model. The equations for the mass and energy

¯uxes in the continuum regime are

_M
ct � 4prdrmDm�yvs ÿ yv1�, �15�

and

_E
ct � 1

2
_M

ct
cpv�Td � T1� � 4prdkm�Td ÿ T1�: �16�

The equations describing the mass and energy ¯uxes in
the free molecular regime are

_M
fm � 4pr 2d

�
aevrvsRvTd����������������

2pRvTd

p ÿ aconrv1RvT1������������������
2pRvT1
p

�
, �17�
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_E
fm � 4pr 2d

24rv1RvT1
�
cpv ÿ Rv

2

�
������������������
2pRvT1
p

�
rg1RgT1

�
cpg ÿ Rg

2

�
������������������
2pRgT1

p
35�Td ÿ Ti �

� _M
fm

�
cpv ÿ Rv

2

�
Td: �18�

Eq. (17) is of course equal to the familiar Hertz±Knud-
sen relation. We have thus obtained six equations for
the seven unknowns _M, _M

ct
, _M

fm
, _E, _E

ct
, _E

fm
and Td.

Eq. (11), relating the energy ¯ux to the mass ¯ux, com-
pletes the description.

3.3. Stepwise growth calculations

As input variables to the growth models, we need
the temperature T1 and the densities rvs, rv1 and
rg1: Since these are not directly measured in the ex-

periments, they have to be calculated from other
(measured) quantities.
The far ®eld temperature T1 is obtained from the

dynamic pressure signal p(t ) using the equation of

state proposed by Sychev et al. [19,20]. These tempera-
ture calculations also provide the compressibility Z1
of the gas at far ®eld conditions. Since the total press-

ure is uniform and the temperature di�erence Td ÿ T1
is generally small, the compressibility is assumed to be
uniform and equal to Z1 throughout the gas phase.

Prior to the actual experiment, the initial molar
vapour fraction ym

v0 is measured. Due to vapour de-
pletion, this fraction diminishes during droplet growth
according to:

ym
v1�t� � ym

v0 ÿ
Z10RvT10

p0
� nd0

4

3
prlr

3
d�t�, �19�

where nd0 is the initial number density of droplets,
which depends on the nucleation pulse conditions p0
and T10: Accordingly, the far ®eld (mass) densities are

obtained from

rv1 � ym
v1�t�

p

Z1RvT1
, �20�

rg1 �
�
1ÿ ym

v1�t�
� p

Z1RgT1
: �21�

The vapour density at the droplet surface is equal to
its (curvature corrected) saturated value,

rvs �
fep

s
v

Z1RvTd

exp

�
2s

rlRvTdrd

�
: �22�

Here ps
v is the saturated pressure of the pure vapour

and fe�p, T � is the enhancement factor, accounting for
enhanced vapour pressures at elevated total pressures

[10,21] �fe, N2
(250 K, 50 bar) = 1.27), and s is the sur-

face tension.
As a starting point for a growth calculation, the in-

itial radius of the droplets has to be known. According
to Muitjens [22], nucleated clusters can be assumed
stable Ð i.e. their ®nite probability of re-evaporation

has become negligible Ð if they contain at least twice
the number of molecules of the critical cluster. Using
classical nucleation theory [10,12] the following re-

lation is obtained

rd0 � 21=3
2s

rlRvT ln S
, �23�

where S denotes the supersaturation of the gas±vapour

mixture, which is de®ned as

S � ym
v p

feps
v

: �24�

For the derivation see Refs. [10,21].

The enhancement factor fe, saturated vapour press-
ure ps

v, surface tension s, liquid density rl and latent
heat L are evaluated at the droplet temperature Td. All

other physical properties involved are computed at an
intermediate temperature Tm. According to Hubbard
et al. [23], a one-third rule is appropriate:

Tm � 1

3
�2Td � T1�: �25�

Using the relations established above, all input vari-
ables for the growth models can be recalculated each

time step. The remaining unknowns are then iteratively
solved from the system of equations for both models.
Finally, the droplet radius is updated each time step

using conservation of mass:

drd

dt
� ÿ

_M

4prlr
2
d

: �26�

The program calculating the growth patterns is written
for the FORTRAN compiler, using several NAG rou-
tines.

4. Results and discussion

First, the growth models will be compared with ex-

perimental droplet growth curves of the n-pentanol±
helium system, which stretch from the transition to the
continuum regime. Then, the models will be compared

with new experimental results considering droplet
growth of water in helium and nitrogen, respectively,
performed at pressures ranging from 10 to 50 bar.
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Consequently, these growth curves are situated in the
near continuum regime, and hence, can be used to

determine the di�usion coe�cients of water in helium
and water in nitrogen. Since the value of rD should be
independent of pressure, this will provide an indepen-

dent check of the validity of the growth models.

4.1. n-Pentanol±helium

As part of an international collaboration, nucleation
experiments of n-pentanol in helium were performed at

Eindhoven University of Technology [8]. Since droplet
growth curves are used as a tool to determine nuclea-
tion rates, these experiments are now used as a refer-
ence system to check the accuracy of the growth

models. The nucleation experiments were performed at
pressures of approximately 1 bar, resulting in exper-
imental droplet growth curves that start in the tran-

sition regime (0.01<Kn<1).
In Fig. 5 droplet growth curves of n-pentanol in

helium are shown at four di�erent temperatures. The

temperatures indicated are averaged over the low
pressure plateau. The error bars of the experimental
data fall within the size of the markers. The disconti-

nuities in the growth curves after about 15 ms are
caused by the arrival of the shock wave re¯ected from
the low pressure section end wall. This causes a posi-
tive jump in pressure and temperature, and conse-

quently the droplets start to evaporate instantaneously.
The experiment at the temperature of 260 K shows a
decrease of the growth rate at the end of the growth

curve, caused by depletion of the vapour. Both models
are compared with 42 experiments in total. For the
lower temperatures (248 K < T < 256 K) the Gyar-

mathy model shows best agreement with the exper-

imental results while the Young model predicts too
large growth rates. For the higher temperatures (260 K

< T<264 K) the experimental growth curves seem to
shift towards the Young model. In Fig. 6 two di�erent
graphs are combined in one diagram. First, the pre-

dicted mass ¯uxes, scaled with their free molecular
¯ow values M fm, are plotted as a function of Kn.
Clearly, the Gyarmathy model predicts a much wider

transition regime than the Young model, resulting in
mass ¯uxes that are smaller in the transition regime.
This can now be used to help explain the di�erent

agreement of the model predictions at di�erent tem-
peratures. Therefore, the experiments shown in Fig. 5
are also plotted in Fig. 6, but now as ``trajectories''
Kn(t ) (right axis). As can be seen, each temperature

corresponds to a di�erent range of Kn, attaining
smaller Kn values at higher temperatures. Looking at
the ``trajectories'' Kn(t ), it can be concluded that the

change from free molecular to transition regime starts
at too high Kn values for the Young model, and the
Gyarmathy model predicts this transition more accu-

rately. On the other hand, the change from the tran-
sition to the continuum regime is better described by
the Young model, where the Gyarmathy model under-

estimates the mass ¯uxes.

4.2. Water±helium and water±nitrogen

The droplet growth experiments of water in helium
or nitrogen are performed at high pressures (10 bar <
p < 50 bar) and low temperature (T = 247 K). The

experimentally obtained radius squared is plotted as a
function of time. The radii squared as they follow
from the model predictions of Young and Gyarmathy

are also plotted as functions of time. In these models

Fig. 6. n-pentanol in helium, at pressures near 1 bar. Left

axis: scaled mass ¯ux as a function of Kn (model). Right axis:

time evolution of Kn (experiment).

Fig. 5. Droplet growth curves of n-pentanol in helium, at

pressures near 1 bar.
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the Fuller correlation [18] is used as an Ansatz value
for the di�usion coe�cient. In this way, small vari-

ations in the growth curve that originate from small
variations in the pressure and temperature, are
accounted for. Then, the theoretical growth curves are

®tted to the experimental results using the di�usion
coe�cient as a ®t parameter. The ®t is always per-
formed in a region where the vapour depletion is still

negligible, in order to minimize the uncertainty in the
value of the di�usion coe�cient. This procedure is
repeated at each pressure and temperature for a num-

ber of experiments.
In Fig. 7 experimental and theoretical growth curves

of the water±helium system are shown. The theoretical
curves are obtained using the Fuller correlation [18]

for the di�ussion coe�cient. The temperature during
the growth of the droplets is approximately 247 K.
The average pressures are 11, 27, and 43 bar. The

error bars of the experimental data fall within the size
of the markers, unless indicated otherwise. The larger
errors are caused by the broadening of the Mie peaks

due to the slower growth of the droplets. Hence, es-
pecially when there is some additional noise in the
scattered intensity, the position of the extremum is less

precise. In Fig. 8 the ®tted di�usion coe�cients for the
water±helium system are plotted. The product of the
speci®c density rm and the di�usion coe�cient Dm

should be independent of the pressure. This holds well

for the results obtained with the Young model. How-
ever, the ®tted values obtained using the Gyarmathy
model decrease signi®cantly as the pressure increases.

This can again be explained by looking at the pre-
dicted mass ¯uxes for the di�erent ranges of Kn values
covered at each pressure. This is shown in Fig. 9. Note

that the mass ¯uxes are now scaled with their con-
tinuum ¯ow values. Looking at the 11 bar experiment
in the right plot of Fig. 9 it can be seen that for this

experiment the Kn value is in the range 0.015 < Kn <
0.02. The Young model predicts (nearly) continuum
growth for these values of Kn, while according to the

Gyarmathy model 0:85 < _M= _M
ct
< 0:9: Assuming the

Young model is correct, the predicted mass ¯ux
according to the Gyarmathy model is about 10% too

low, corresponding to the about 10% too high value
of rmDm (Fig. 8). As pressure increases Kn becomes
smaller and the Gyarmathy model also approaches the
continuum limit, making the di�erence between the

two models smaller. As a result the di�usion coe�cient
®tted with the Gyarmathy model approaches the one
®tted with the Young model. The transition regime

Fig. 8. rmDm versus p for the water±helium system. The di�u-

sion coe�cients Dm are obtained by ®tting the Young model

and the Gyarmathy model to experimental growth curves.

Fig. 9. Water in helium �T1247 K). Left axis: scaled mass

¯ux as a function of Kn (model). Right axis: time evolution of

Kn (experiment).Fig. 7. Droplet growth curves of water in helium �T1247 K).
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according to the Gyarmathy model stretches too far
into the continuum regime. The correct experimental

di�usion coe�cient is therefore given by the ®ts with
the Young model.
For the water±nitrogen system, generally the same

holds as for the water±helium system. Experimental

and theoretical (not ®tted) growth curves are shown in
Fig. 10. Again, the error bars of the experimental data
fall within the size of the markers, unless indicated

otherwise. The resulting experimentally ®tted di�usion
coe�cients using the two models are shown in Fig. 11.
The trends observed are the same as for the water

helium system. Looking at the range of Knudsen num-
bers for each pressure and the matching ratio of
_M= _M

ct
(Fig. 12), it can again be concluded that the

transition regime according to the Gyarmathy model
stretches too far into the continuum regime. Since the

10 bar result of rmDm ®tted with the Young model is a
bit higher than the 25 and 40 bar results, one could
say that the same holds for the Young model,

although less severe. However, the ®tted values of
rmDm are independent of pressure, within the exper-
imental error. The experimental di�usion coe�cients

®tted with the Young model are therefore again con-
sidered to be correct.

5. Discussion

From the results stated above, it follows that the

quality of both models, depends on the Knudsen range
involved. Varying the values of the parameters
acon, aev, and b does not result in an improved per-

formance of the models. The sensitivity of the Young
model to the parameter b is shown in Fig. 13. For b
values in between 0.75 and 3 the _M= _M

fm
values are

only weakly dependent on b: Still, at low Knudsen
numbers, a value b � 3 would yield too high values of
_M= _M

fm
, which have not been observed.

As mentioned earlier, Peters and Paikert also studied
droplet growth using a shock tube. In their paper pub-
lished in 1989 [12], they compared their experimental
results to a model by Gyarmathy, di�erent from the

one used here. The model starts from pure continuum
growth, and adds a correction term which depends on
the size of the mean free path of the molecules. They

found good agreement with their experimental results,

Fig. 10. Droplet growth curves of water in nitrogen �T1247

K).

Fig. 11. rmDm vs. p for the water±nitrogen system. The di�u-

sion coe�cients Dm are obtained by ®tting the Young model

and the Gyarmathy model to experimental growth curves.

Fig. 12. Water in nitrogen �T1247 K). Left axis: scaled mass

¯ux as a function of Kn (model). Right axis: time evolution of

Kn (experiment).
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except for very large Knudsen numbers (Kn> 500). In
their paper of 1994 [13], a di�erent growth model was

used to compare their experimental results to. They
used the original expressions by Young [7] as a starting
point, and modi®ed these by making several approxi-

mations. It can be shown that their resulting ex-
pressions are very similar to the ones of the
Gyarmathy model as it is used here. For the mass ¯ux

we obtain the same result if we take the temperature
of the droplet and the far ®eld to be equal in our ex-
pression. In order to get the same result for the energy

¯ux, the ®rst term on the right-hand side in our Eq.
(16) and the last term on the right-hand side of our
Eq. (18) have to be neglected. Furthermore, the mean
free path as it is de®ned by Young has to be inserted.

Their model predictions and experimental results show
excellent agreement for Knudsen numbers down to
about Kn = 0.02, which is in agreement with our ob-

servations. Rodemann and Peters [24] later used the
same model, and extended it to include the growth of
binary droplets. Again, good agreement was found

with experimental results (Kn< 0.02), which were now
obtained using a piston-expansion-tube.
To evaluate our newly found di�usion coe�cient

data they are compared with literature data. Therefore,
in Figs. 14 and 15 they are shown together with
reported data for the water±helium [25,26,28] and
water±nitrogen system [25,27], respectively. The

reported data are in terms of pressure times di�usion
coe�cient. This is independent of pressure whenever
the ideal gas law is valid and the compressibility Z

thus equals one. Our data of density times di�usion
coe�cient rD have to be multiplied by the gas con-

stant R and temperature T in order to compare them
to the reported results. For the water±helium system

the discrepancies with the data previously found in our
group by Luijten et al. [25] are quite large. However,
the newly found data are regarded as more accurate,

for two reasons. First, the determination of the vapour
fraction has been improved. But more importantly, the
existing data were obtained from ®ts with the Gyar-

mathy model, which was then assumed to be correct.
Therefore, these data have been reevaluated using the
Young model, and the corrected results are also shown
in Fig. 14. As can be seen, the data are consistent

within the experimental error. For the water±nitrogen
system the results are obtained at smaller Kn values,
where the di�erence between the Gyarmathy model

and the Young model is very small. Hence, the di�er-

Fig. 14. Di�usion coe�cient data of water in helium.

Fig. 15. Di�usion coe�cient data of water in nitrogen.

Fig. 13. b-Dependency of the Young model. The Gyarmathy

model is also shown in order to get a clear view of the relative

changes.
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ence in �pD�id when using either the Gyarmathy model
or the Young model is negligible and the reported data

by Luijten et al. [25] already agree well with our newly
found data.
The Fuller correlation, which was used as a refer-

ence value for the di�usion coe�cient, is also shown in
both plots (dotted line). Apparently, this correlation
gives di�usion coe�cients over a quite large tempera-

ture range with error bounds smaller than 5%.

6. Conclusions

The droplet growth models by Gyarmathy and
Young have been compared with experimental results.
In all cases the model by Gyarmathy predicts a much

broader transition regime in terms of the Knudsen
number. For the n-pentanol±helium experiments this
appears to be correct at the upper end of the spectrum

(large Kn ). However, at the lower part of the spectrum
(small Kn ), the Gyarmathy model predicts too low
mass ¯uxes, and the Young model yields more accu-

rate results. This is consistent with the new results
obtained from the water±helium and water±nitrogen
experiments, which were all located near the con-
tinuum regime. An incorrect pressure dependence of

the product rD is found, when the di�usion coe�cient
is used to ®t the Gyarmathy model to the experimental
growth curves. This can again be attributed the tran-

sition regime stretching too far into the continuum
regime, according to the Gyarmathy model. The
Young model gives good results for the near con-

tinuum regime, and new experimental di�usion coe�-
cient data have thus been obtained. These data are
found to be in good agreement with literature data
and are well described by the Fuller correlation.

Appendix A. Physical properties

Helium
M = 4.003 (kg kmolÿ1) [18]
d = 0.2551 (nm) [18]
Cp = 5R/2 (J molÿ1 Kÿ1) [18]
k = ÿ2.449 � 10ÿ2 + 1.124 � 10ÿ3T ÿ 2.929 �
10ÿ6T 2 + 4.493 � 10ÿ9T 3 ÿ 2.518 � 10ÿ12T 4 (W

mÿ1 Kÿ1) [29]

Nitrogen

M = 28.013 (kg kmolÿ1) [18]
d = 0.3798 (nm) [18]
Cp = 31.15 ÿ 1.357 � 10ÿ2T + 2.680 � 10ÿ5T 2 ÿ
1.168� 10ÿ8T 3 (J molÿ1 Kÿ1) [18]
k8 = ÿ6.683 � 10ÿ4 + 1.0558 � 10ÿ4T ÿ 5.5989 �
10ÿ8T 2 (W mÿ1 Kÿ1) [30]

k � k8�T � � 0:025028 exp�0:535 pVc

ZRT ÿ 1� (W mÿ1

Kÿ1) [18]

n-Pentanol
M = 88.15 (kg kmolÿ1) [18]
d = 0.6677 (nm) [18]
Cp � 3:869� 0:5045Tÿ 2:639� 10ÿ4T 2 � 5:120�
10ÿ8T 3 (J molÿ1 Kÿ1) [18]
ps � 133:324 exp�90:08ÿ 9788=Tÿ 9:90 ln T � (Pa)
[32]
rl �

P5
i�0 ai�1ÿ T=Tc�i=3,

a0 = 270; a1 = 1930.2; a2 = ÿ 8414.8;
a3 = 19226.0; a4 = ÿ 18559.3; a5 = 6555.7 (kg
mÿ3) [33]

L � 67:55� 103�1ÿ T=Tc�0:8272 exp�0:8195T=Tc� (J
molÿ1) [34]
s0 � 2:6855� 10ÿ2 ÿ 7:889� 10ÿ5�Tÿ 273:15� (N

mÿ1) [31]

Water

M = 18.015 (kg kmolÿ1) [18]
d = 0.2641 (nm) [18]
Cp � 32:24� 1:924� 10ÿ3T� 1:055� 10ÿ5T 2 ÿ
3:596� 10ÿ9T 3 (J molÿ1 Kÿ1) [18]
ps�610:8 exp�ÿ5:1421 ln�T=273:15� ÿ 6828:77�1=Tÿ
1=273:15�� (Pa) [35]
rl=999.84+0.086(Tÿ273.15)ÿ0.0108(Tÿ273.15)2
(kg mÿ3) [36]
L � 5:382� 103�7:08�1ÿ T=Tc�0:354 � 3:767�1ÿ
T=Tc�0:456� (J molÿ1) [18]
s0 � 0:127245ÿ 1:89845� 10ÿ4T (®tted for T <
268 K) (N mÿ1) [37]

A1. Binary di�usion, vapour pressure enhancement and
surface tension

For n-pentanol±helium the Chapman±Enskog corre-
lation is used [18]. Required values for the Lennard±
Jones parameters E and s were ®tted to literature di�u-

sivity data by ZÏ dõÂmal [31], resulting in E12=kB � 55:75
K and s12 � 0:4614 nm. After substitution of these
values, and eliminating the pressure in favour of the

mass density, the remaining relation is

rD � 2:174� 10ÿ7Oÿ1D �T=K�0:5
ÿ
kg mÿ1 sÿ1

�
The collision integral OD is a function of the dimen-
sionless temperature t � T=E12 [18]:

OD � 1:06036

t0:15610
� 0:19300

exp�0:47635t� �
1:03587

exp�1:52996t�

� 1:76474

exp�3:89411t�

For all helium systems, fe is evaluated including only
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the Poynting-e�ect:

fe � exp

�
M�pÿ psat �

rlRT

�
: �A1�

Enhancement factors for water in nitrogen are given
by Ref. [10]

fe � exp
�
b�T� � �pÿ psat �

�
, �A2�

with p in bar and where

b�T� � 4:420� 10ÿ2 ÿ 3:03� 10ÿ4T� 7:31

� 10ÿ7T 2 ÿ 5:98� 10ÿ10T 3: �A3�

For water±nitrogen, a pressure dependent term is
added to the surface tension, resulting in [10]

s � s0 ÿ 6� 1018kBT ln

�
p� 326

326

�
: �A4�

Here, the pressure p should again be taken in bar.

Appendix B. Continuum ¯uxes

The conservation of mass

d

dr

�
r 2ru

�
� 0 �B1�

can be rewritten in the form

d

dr

h
r 2rv�u� vv � � r 2rg�u� vg �

i
� 0: �B2�

Here the partial densities �r � rv � rg� and the de®-
nition of di�usion ¯uxes �rvvv � rgvg � 0� were used.
Assuming that the gas does not enter the droplet �u�
vg � 0� this can be written as

d

dr

�
r 2rv�u� vv �

�
� 0: �B3�

Assuming steady state, integration of Eqs. (B1) and
(B3) give the constant mass ¯ux

_M � 4pr 2ru � 4pr 2rv�u� vv �: �B4�
Writing the di�usion ¯ux as:

rvvv � ÿrD d

dr

rv

r
, �B5�

and combining this with Eq. (B4), the following result
can be obtained

_M�1ÿ yv � � ÿ4pr 2rDdyv

dr
, �B6�

where the vapour mass fraction yv � rv=r was intro-
duced. For small vapour mass fractions �yv � 1� the
term rD is independent of yv, and Eq. (B6) can be
readily integrated, yielding

_M � 4pr 2i rD ln

�
1ÿ yv1
1ÿ yvi

�
: �B7�

For small vapour mass fractions the logarithmic term
can be linearised to give

_M � 4pr 2i rD�yvi ÿ yv1�: �B8�

From the conservation of energy

d

dr

�
ru
ÿ
h� u 2=2

�
� r 2 _q

�
� 0, �B9�

the (steady state) total energy ¯ux can be obtained by
integration:

_E � 4pr 2ru
ÿ
h� u 2=2

�
� 4pr 2 _q: �B10�

The heat ¯ux per unit area can be written as

_q � ÿkdT

dr
� hvrvvv � hgrgvg, �B11�

where the ®rst term on the right is a conduction term,
and the second and third are di�usion terms. Combin-

ing Eq. (B10) with Eqs. (B4) and (B11), neglecting the
kinetic term, and keeping in mind that rvvv � rgvg � 0
and h � �rv=r�hv � �1ÿ rv=r�hg, the following result

can be obtained

_E � _McpvT� 4pr 2k
dT

dr
, �B12�

where hv � cpvT was used. Integration of this equation
yields

_Eÿ _McpvTi

_Eÿ _McpvT1
� exp

 
ÿ

_Mcpv

4prik

!
� exp� ÿ E�: �B13�

For small E this can be approximated as

_Eÿ _McpvTi

_Eÿ _McpvT1
� 1ÿ E� E 2=2, �B14�

resulting in

_E � 1

2
�Ti � T1�cpv

_M� 4prik�Ti ÿ T1�: �B15�

When a ®rst order instead of a second order approxi-
mation is made the ®rst term on the right should be

replaced by _McpvT1: For the cases studied in this
paper several numerical calculations were carried out
both with and without the approximations of the log-
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arithm and exponential, and no signi®cant di�erences
were found.
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